

REVISTA ACADÊMICA - ENSINO DE CIÊNCIAS E TECNOLOGIAS IFSP - CAMPUS CUBATÃO - **CATEGORIA: ARTIGO** NÚMERO 12 - JAN/JUN DE 2023

Prova de conceito de algoritmo com rede neural artificial para tratamento de imagem para tomografia de câncer cerebral infantil por micro-ondas

João Gabriel de Souza Bitencourt

Bacharelado de Engenharia de Controle e Automação Laboratório Maxwell de Micro-Ondas e Eletromagnetismo Aplicado (LABMAX) Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP) – Campus Cubatão, SP, Brasil.

Raimundo Eider Figueiredo Sobrinho

Bacharelado de Engenharia de Controle e Automação Laboratório Maxwell de Micro-Ondas e Eletromagnetismo Aplicado (LABMAX) Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP) – Campus Cubatão, SP, Brasil.

Dr. Alexandre Maniçoba de Oliveira

Laboratório Maxwell de Micro-Ondas e Eletromagnetismo Aplicado (LABMAX) Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP) – Campus Cubatão, SP, Brasil.

Dr. Arnaldo de Carvalho Junior

Laboratório Maxwell de Micro-Ondas e Eletromagnetismo Aplicado (LABMAX) Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP) – Campus Cubatão, SP, Brasil.

Resumo: Os tumores cerebrais são o resultado do crescimento descontrolado de células anormais. Tumores cerebrais e do sistema nervoso central representam 26% dos cânceres infantis. Assim como os demais tipos de câncer, o diagnóstico precoce é fundamental para o processo de cura e de sobrevida do paciente infantil. Ferramentas de diagnóstico de câncer, sobretudo de forma não invasiva, de baixo custo, são altamente desejáveis. Entre as diferentes tecnologias utilizadas para o diagnóstico de câncer infantil, estão os sistemas de tomografia por ondas eletromagnéticas de micro-ondas de campo próximo e baixa intensidade. As medições coletadas com esta técnica precisam ser processadas e tratadas para formar as imagens que serão interpretadas por um profissional de medicina. Algoritmos de inteligência artificial (IA) têm sido utilizados para o processamento de imagens. Esse artigo trata de uma prova de conceito de algoritmo utilizando rede

neural artificial (RNA) para identificação e classificação de diferentes materiais, para elaboração de imagem de tomografia por micro-ondas de campo próximo para diagnóstico de câncer cerebral infantil.

Palavras–chave: Imagem de Micro-ondas de Campo Próximo. Imagem Médica. Rede Neural Artificial. Lógica Paraconsistente.

Abstract: Brain Tumors are the result of the uncontrolled growth of abnormal cells. Brain and central nervous system tumors account for 26% of childhood cancers. As with other types of cancer, early diagnosis is essential for the healing process and survival of the child patient. Cancer diagnostic tools, especially in a non-invasive, low-cost way, are highly desirable. Among the different technologies used for diagnosing childhood cancer are low-intensity, near-field microwave electromagnetic wave tomography systems. Measurements collected with this technique need to be processed to form the images that will be interpreted by a medical professional. Artificial intelligence (AI) algorithms have been used for image processing. This article deals with a proof-of-concept algorithm using an artificial neural network (ANN) for the identification and classification of different materials, for the elaboration of a microwave tomography image for the diagnosis of childhood brain cancer.

Keywords: Near-field microwave image. Medical Image. Artificial Neural Network. Paraconsistent Logic.

1 INTRODUÇÃO

O câncer é uma doença caracterizada por uma má formação celular, estando presente em todo o reino animal, principalmente nos seres humanos. Há uma relação entre países de baixa e média renda e o número de casos que afetam esses lugares [1], em que o Brasil se encaixa nesse parâmetro. De acordo com o Instituto Nacional de Câncer (INCA), o câncer, no Brasil, fica abaixo apenas das doenças cardiovasculares [1].

O câncer cerebral infantil é um dos grandes problemas de saúde pública na contemporaneidade, sobretudo quando se observa o aumento no número de casos. Observa-se a necessidade de redução do tempo entre o início da patologia e o seu diagnóstico a fim de se obter a melhoria na sobrevida das crianças pacientes [2], [3].

Observa-se aumento na ocorrência dos casos de câncer cerebral infantil, apesar da redução da mortalidade, graças aos avanços no diagnóstico precoce e de seu tratamento [4], [5].

O diagnóstico precoce é uma ação a ser implementada como forma de prevenção ao câncer cerebral infantil. No entanto, esse tipo de diagnóstico requer exames realizados por equipamentos grandes, de alta tecnologia e de alto custo [2]. Assim, pode-se qualificar como principal problema para o diagnóstico precoce do câncer cerebral infantil a necessidade de um equipamento de fácil acesso, baixo custo e de precisão. Para tanto, intensos esforços da comunidade acadêmica de eletromagnetismo têm sido aplicados à bioengenharia. Destaque-se a aplicação de micro-ondas para o diagnóstico do câncer cerebral infantil por imagens [6],[7],[8].

A técnica de imagens por micro-ondas consiste em se utilizar basicamente de um sistema de radar de pulsos, que podem estar entre 1 e 10,6 GHz, formado pelo sistema eletrônico e pelas antenas (receptoras e transmissoras), dispostas na forma de arranjo no entorno da cabeça da criança e, a partir da interação das micro-ondas de baixa potência e de seus tecidos, realiza-se a análise [8]. Estes sinais eletromagnéticos sofrem mudanças em função das diferentes densidades dos tecidos e, após atravessá-los, são recebidos pela antena e processados por algoritmos específicos que, por sua vez, apresentam uma espécie de representação dielétrica (condutividade e permissividade) dos tecidos do cérebro na forma de imagens de alta resolução [8]. Estas imagens permitem ao médico diagnosticar precocemente o câncer cerebral infantil, conforme resultados dos trabalhos publicados sobre diagnóstico por imagens por micro-ondas [8],[9],[10].

O sistema de diagnóstico precoce de câncer por imagens de micro-ondas precisa de ambientes propícios de teste e calibração para serem desenvolvidos. Para isso, trabalhos de pesquisa para detecção de tumores por imagens por micro-ondas utilizaram, sobretudo em sua fase inicial, *phantoms* como alternativa ao uso em humanos [11]. Os *phantoms* são modelos físicos feitos a partir de materiais sintetizados de forma a imitar as características eletromagnéticas dos tecidos e órgãos, para aplicação em análise por imagens, além de poderem ser utilizados em procedimentos de calibração [12], [13].

As micro-ondas têm sido investigadas para a detecção de tumores, com destaque para o emprego de técnicas de inteligência artificial (IA), aprendizado de

20

máquina (*machine learning* - ML) e redes neurais artificiais (RNAs) (*artificial neural network* – ANN) [14],[15],[16].

RNAs são algoritmos capazes de aprender uma determinada função ou reconhecer padrões. Apesar de não terem a mesma complexidade de um cérebro biológico, as RNAs apresentam duas similaridades básicas com o neurônio biológico: a possibilidade de descrição de seus blocos de construção por dispositivos computacionais simples e as conexões entre os neurônios determinam a função da rede [17]. A Fig. 1 apresenta a concepção de um neurônio artificial.

Figura 1 - Estrutura simplificada de um neurônio Artificial

Neurônio de Múltiplas Entradas

Fonte: Adaptado de [17].

Onde $p_{1}...p_{n}$ são as entradas, $w1, 1...w_{I,R}$ são os pesos aplicados sobre o valor da entrada, *b* ou "bias" é um valor de ajuste, *n* é o resultado da soma. O bloco *f* é a função de ativação que será aplicada ao neurônio artificial, enquanto *a* é valor de saída deste neurônio. O neurônio artificial pode ser descrito pelas equações (1) e (2), sendo que esta última equação está na forma de matriz.

Diversas funções matemáticas podem ser utilizadas como função de ativação de neurônios artificiais [18]. De modo a permitir o treinamento do neurônio e das redes neurais, é desejável que a função seja não linear e derivável [17]. A interligação de neurônios e a organização em camadas formam as RNAs.

$$n = w_{1,1}p_1 + w_{1,2}p_2 + w_{1,3}p_3 + \dots + w_{1,R}p_R$$
(1)

$$a = f(Wp + b) \tag{2}$$

21

Uma função de ativação bastante utilizada é a tangente hiperbólica, com curva tipo sigmoide, cuja equação e sua derivada são apresentadas em (3) e (4) [17],[18].

$$a = \tanh tanh(n) = \frac{e^n - e^{-n}}{e^n + e^{-n}}$$
 (3)

$$(n) = 1 - (n) \tag{4}$$

O algoritmo proposto também faz uso da lógica paraconsistente anotada com anotação de dois valores (LPA2v) para a extração de média. A LPA2v pertence à família de lógicas paraconsistentes, cuja principal característica é a revogação da não contradição, intrínseca da lógica clássica [17]. A LPA2v é uma lógica robusta, com matemática simples e que permite o tratamento de sinais e informações contraditórias. Entre os diversos algoritmos e baseadas nas equações da LPA2v, está o paraextrator. Este algoritmo permite o cálculo de média, em um grupo de evidências, pela extração dos efeitos da contradição, como ruídos e incertezas, com respeito a uma determinada proposição [19].

O algoritmo do paraextrator funciona da seguinte forma:

- a) Em uma base de dados ou vetor, selecione os valores máximo e mínimo.
- b) O valor máximo será a evidência μ₁, enquanto o valor mínimo será a evidência μ₂.
- c) Aplique a LPA2v, equações (5)-(7), para calcular o grau de evidência resultante (μ_{ER}).

$$d = \sqrt{\left(1 - \left|\mu_1 + \mu_2 - 1\right|\right)^2 + \left(\mu_1 - \mu_2\right)^2}$$
(5)

$$D = \{1 \ d > 1 \ d \ d \le 1$$
 (6)

$$\mu_{ER} = \left\{ \frac{2-D}{2} \left(\mu_1 + \mu_2 - 1 \right) > 0 \frac{D}{2} \left(\mu_1 + \mu_2 - 1 \right) < 0 \ 0.5 \left(\mu_1 + \mu_2 - 1 \right) = 0$$
(7)

- d) Adicione o $\mu_{\rm ER}$ na base de dados e retire os valores máximo e mínimo utilizados.
- e) Retorne ao passo a) e refaça os cálculos até restar apenas um valor final possível para μ_{ER} .

Esse artigo dá continuidade aos estudos desenvolvidos em [8], apresentando os resultados de uma prova de conceito de algoritmo, utilizando algoritmo paraextrator da LPA2v para extração de média e rede neural artificial (RNA) para identificação e classificação de diferentes padrões de reflexão de sinais. O objetivo é a elaboração de imagem de tomografia por micro-ondas de campo próximo para diagnóstico de câncer cerebral infantil. A seção 2 apresenta a metodologia utilizada pelo algoritmo proposto. A seção 3 apresenta os resultados alcançados por esta pesquisa, com uma breve discussão. O artigo é finalizado com as considerações finais, apresentadas na seção 4.

2 MATERIAIS E MÉTODOS

Esta sessão apresenta os conceitos básicos utilizados para a elaboração do algoritmo de tratamento de imagem de medição de micro-ondas de baixa intensidade de campo próximo, para o câncer cerebral infantil.

2.1. Medição e Base de Dados

Para as medições, utiliza-se um posicionador de antena e um equipamento refletômetro no domínio do tempo (*time domain reflectometer* - TDR), conforme descrito em [16]. O TDR gera um pulso em uma frequência de micro-ondas que propagará até o alvo e retornará ao instrumento. O TDR mede, então, o sinal recebido, que dependerá das características dielétricas do alvo. A Fig. 2 apresenta uma fotografia da antena Vivaldi Palm Tree, do *phantom*, do posicionador utilizados.

Figura 2 - Sistema de geração de micro-ondas utilizando phantom e antena Palm Tree

Fonte: Adaptado de [16].

Para o desenvolvimento do algoritmo, foram utilizadas as bases de dados geradas pelas medições realizadas em [8]. O phantom utilizado é um modelo de cabeca infantil semirrealista e homogêneo, feito de poliestireno expandido (isopor) da Daiso Industries Company, Ltd., Modelo YM-18-P6 C028 600 - EPS n.º 4, lote n.º 2009BJ. Dentro deste Phantom, é posicionado, na parte frontal, um modelo de tumor, modelado com uma bolsa de silicone, com paredes de 30 µm de espessura, preenchida com água mineral. A antena se desloca a passos de 1 mm, alguns centímetros antes e depois do alvo. Dois conjuntos de medições foram realizadas. Com e sem tumor simulado. O resultado foram duas planilhas, de 101 colunas (medições), com 1001 pontos. A Fig. 3 apresenta uma parte da planilha com as medições obtidas com tumor simulado.

	101 colunas (medições)					
1001 pontos (cada medição)	50.4214 50.4294 50.4352 50.4387 50.4400 50.4391	50.4223 50.4304 50.4361 50.4396 50.4409 50.4400	50.4233 50.4313 50.4371 50.4405 50.4418 50.4408	50.4243 50.4323 50.4380 50.4415 50.4426 50.4416	ições) 	50.4194 50.4272 50.4328 50.4362 50.4374 50.4364
Ļ	50.1296 50.1066	50.1284 50.1052	50.1267 50.1035	50.1248 50.1016		50.1344

Figura 3 – Medições do TDR phantom com tumor

Fonte: Elaborado pelos autores (2022).

A Fig. 4 apresenta um exemplo de medições (colunas), do arquivo de medições com tumor, identificadas como medição em vazio (sem alvo, ar), corpo (phantom) e tumor. Observa-se que há uma pequena diferença nos valores de amplitude de cada uma das medições dos três obstáculos, dificultando a distinção e análise dos dados comparativos.

Figura 4 - Sistema de geração de micro-ondas utilizando phantom e antena Palm Tree

2.2. Identificação de Padrões e RNA resultante

A metodologia proposta neste artigo considera duas etapas. A primeira consiste no treinamento da rede neural. A segunda consiste em utilizar um algoritmo de preparação de dados com a rede neural treinada para a confecção da imagem da tomografia. A imagem proposta é em 2D, considerando-se duas direções de medidas coletadas, frontal e lateral.

A Fig. 5 apresenta o algoritmo proposto para o treinamento da RNA. Os blocos são explicados a seguir:

- a) O primeiro passo é selecionar a base de dados. A primeira metade da base de dados com câncer foi utilizada para o treinamento da RNA (colunas 1 a 50), enquanto a segunda metade foi utilizada para validação (51 a 101).
- b) Amostras 1 a 10 são usadas para caracterizar o vazio. Amostras 25 a 35 para caracterizar o corpo e amostras 46 a 50 para caracterizar o tumor.
- c) É calculada a média das amostras em vazio, linha a linha (média de 10 valores em cada uma das 1001 linhas), com o algoritmo do paraextrator.
- d) Subtração das 101 amostras (colunas) pela média do vazio. Isso é feito para retirar o ruído de fundo das medições.

- e) Com a nova base de dados resultante, calcular a média das amostras em vazio (1 a 10), corpo (25 a 35) e tumor (46 a 50), com o algoritmo paraextrator.
- f) Aplicar a transformada rápida de Fourier (*fast* Fourier *transform* FFT) nas três médias obtidas no bloco anterior.

As três curvas obtidas são usadas para o treinamento de uma RNA, com a ferramenta *neural net pattern recognition* (nprtool) do Matlab. A RNA deve apresentar saída 1 quando um determinado padrão é apresentado em sua entrada e zero para os outros dois padrões.

Fonte: Adaptado de [16].

A Fig. 6 apresenta o conceito.

Figura 6 – Diagrama conceitual da RNA, sinais de entrada e saídas resultantes

Fonte: Adaptado de [16].

A ferramenta nprtool gera um bloco do Simulink que pode ser acionado para ser executado via script do Matlab. Este bloco será usado para a classificação de padrões apresentados em sua entrada, pelo algoritmo de tomografia de imagem de câncer cerebral infantil, proposto neste artigo.

2.3. Identificação de Padrões e RNA

A Fig. 7 apresenta o fluxograma do algoritmo para classificação dos padrões e montagem da imagem de diagnóstico em 2D. Ele pode ser descrito da seguinte forma:

- a) O primeiro passo é obter os arquivos das medições nas direções frontal e lateral.
- b) Seleção das amostras em vazio (no início da medição), cálculo da média das medições em vazio com o paraextrator e subtração de todas as medidas por esta média em vazio.
- c) Cálculo da FFT de todas as amostras.
- d) Executa a RNA para todas as amostras, em cada direção. O resultado são dois arquivos com 101 pontos cada e três saídas (vazio, corpo e tumor), com valores 0 ou 1. Estes dois arquivos são utilizados para a montagem de uma figura com cores vermelho, verde e azul (*red, green and blue* – RGB) no Matlab.

A próxima seção apresenta os resultados obtidos.

Figura 7 – Fluxograma do algoritmo de tomografia por micro-ondas com classificação de padrões utilizando RNA

Fonte: Adaptado de [16].

3 RESULTADOS

Nesta seção, são apresentados os resultados obtidos tanto para a identificação de padrões e projeto da RNA, como para a confecção da imagem de tomografia do câncer cerebral infantil.

3.1. Padrões Identificados e RNA Resultante

A execução do algoritmo da primeira etapa, de identificação de padrões, resultou nas curvas de referência (padrões), apresentados na Fig. 8. A FFT resulta em uma redução no número de pontos, de 1001 para 30, permitindo uma simplificação na arquitetura da RNA. Além disso, a subtração das medidas pela média em vazio, além de extrair o ruído de fundo, permite uma melhor distinção entre as envoltórias das curvas de vazio, corpo e tumor.

Figura 8 – Resultado após a FFT das médias das amostras em vazio (vermelho), corpo (verde) e tumor (azul)

Após algumas tentativas de treinamento da RNA com a ferramenta nprtool do Matlab, foi definida a configuração com 30 entradas, dez neurônios na camada oculta e três saídas. A Fig. 9a apresenta esta configuração, enquanto a Fig. 9b apresenta o resultado da análise do treinamento da RNA. A função de ativação dos neurônios da camada oculta é a tanh. Os neurônios da camada de saída utilizam função linear simples. A ferramenta do Matlab permite criar um bloco no Simulink, já com os pesos e bias aprendidos e configurados.

Figura 9 – Topologia da RNA (a) e resultado do treinamento (b) A Pattern Recognition Neural Network (view)

Fonte: Adaptado de [16].

A Fig. 10 apresenta o resultado de teste da RNA, utilizando-se amostras da segunda metade do arquivo de medições com tumor da base de dados. A amostra número 95 foi utilizada para testar a classificação em vazio, a amostra 75 para verificar a classificação do corpo e a amostra 55, do tumor.

Figura 10 – Topologia da RNA (a) e resultado do treinamento (b)

Fonte: Adaptado de [16].

Note-se, que, nos três casos, a saída identificada é de, aproximadamente, 1 e as não identificadas, aproximadamente 0. Os resultados foram considerados aceitáveis para a RNA ser utilizada na identificação e classificação de padrões, para ser usada na prova de conceito proposta.

3.2. Imagem de Tomografia de Micro-ondas por RNA

Para a elaboração da imagem proposta da tomografia por micro-ondas, são necessários duas medições, frontal e lateral, do *Phantom,* conforme Fig. 11. Figura 11 – Geração da Imagem de Diagnóstico do Tumor

Fonte: Elaborado pelos autores (2022).

Infelizmente, o método proposto em [8] apenas utilizou medições em uma direção (frontal). Assim sendo, uma base de dados foi montada artificialmente com o arquivo de medições sem tumor, que não foi utilizado para o treinamento ou validação da RNA. Este arquivo sem tumor foi alterado para simular as medições na direção lateral. As alterações consistiram de:

- a) Inserido Medidas com Tumor 47, 48 (início), 51 (meio), 56 e 57 (fim) a partir da posição 20 do arquivo.
- b) Repetido 24 medidas do cérebro sem tumor, da posição 80 104.

Com as alterações feitas, base de dados lateral resultou em uma planilha com 130 colunas, de 1001 pontos. A base de dados de medições frontal é a mesma com câncer cuja metade das amostras havia sido utilizada para o treinamento da RNA. Os dois arquivos foram utilizados como entrada para o algoritmo de elaboração de imagem. O *script* elaborado em Matlab executa as etapas com o arquivo de medidas frontal, chamando o bloco do simulink a analisar a cada amostra (coluna) sequencialmente e salva uma matriz. Como a RNA possui três saídas, cada uma delas corresponde a uma cor, no padrão RGB. Em seguida, o *script* executa os mesmos passos, porém agora para o arquivo de medidas lateral, salvando uma segunda matriz. A Fig. 12 mostra uma imagem montada com a classificação da RNA, para a matriz de cada direção de medição, frontal (a) e lateral (b). Vermelho refere-se à medição em vazio, enquanto verde se refere ao corpo e azul ao tumor.

Figura 12 – Padrão de imagem de medição frontal (a) e lateral (b)

Fonte: Elaborado pelos autores (2022).

33

Figura 13 – Resultado Prova de Conceito de Imagem de Micro-ondas por RNA (a) e Imagem original algoritmo referência [8] (b)

(a)

Fonte: (a) Elaborado pelos autores (2022) e (b) Adaptado de [8].

O *script* proposto compara então os valores das duas matrizes, ponto a ponto (ou *pixel* a *pixel*), de modo a montar uma imagem de 101 x 130 pontos. Analisa-se *pixel* a *pixel* da esquerda para a direita e de cima para baixo. O processo se dá da seguinte forma:

a) Compara-se um valor RGB frontal, com cada valor RGB lateral.

- b) Se R frontal >= R lateral, faça saída R = R frontal. Caso contrário, saída R = R lateral.
- c) Se G frontal >= G lateral, faça saída G = G frontal. Caso contrário, saída G = G lateral.
- d) Se saída R >= 0.9, faça saída G = 0. Caso contrário, mantém saída G.
- e) Saída B = B frontal x B lateral.
- Repete-se a etapa b, com o próximo valor RGB frontal, para a próxima linha até concluir a imagem.

O resultado é apresentado na Fig. 13a. Para efeitos de comparação, a imagem obtida pelo método de tratamento de imagem com a equação de energia de Shannon (Shannon *energy*) da referência [8] é apresentado na Fig. 13b.

Note-se que, no método proposto por esta prova de conceito, consegue distinguir entre três diferentes obstáculos: o vazio, o corpo ou cabeça e o tumor. Já o método apresentado em [8], as cores representam a intensidade da reflexão do sinal medido, após o tratamento com aplicação de equações Shannon *energy* e polinomial. Este método é capaz de destacar uma enorme diferença entre os obstáculos, mas não distingue os limites de vazio e corpo, por exemplo. A medição em duas direções permite, ainda, que o método proposto por esta prova de conceito delimite melhor a posição e o formato (*shape*) do tumor.

4 CONCLUSÃO

Neste artigo foi proposto um algoritmo para identificação de padrões de medições de reflexão de micro-ondas de campo próximo, e classificação de padrões, de modo a compor uma imagem de tomografia de reflexões de OEM de micro-ondas de campo próximo, para diagnóstico de câncer cerebral infantil. Os algoritmos de identificação e confecção de imagem fazem uso de equações e regras da LPA2v para o cálculo de média de medições (paraextrator) e de rede neural artificial para classificação de padrões. Em que pese a aplicação proposta, o método pode ser adaptado para outros tipos de diagnósticos, como outros tipos de tumores e doenças, como infecções nos pulmões devido à pneumonia severa ou COVID-19. O método pode também ser ampliado para identificar outros obstáculos, como massa encefálica, nervos, coágulos, acúmulo de líquidos, crânio, tecidos de pele, entre outros.

A prova de conceito proposta neste artigo pode ser considerada como uma segunda geração e uma continuidade nos estudos apresentados em [8]. Os próximos passos da pesquisa incluem a substituição da RNA clássica obtida com o aplicativo do Matlab, por outra com neurônios LPA2v [17], ampliar o número de padrões de identificação de substâncias, aumentar a resolução e melhorar a qualidade da imagem final gerada.

REFERÊNCIAS

[1] NOGUEIRA, H. S.; LIMA, W. P. Câncer, sistema imunológico e exercício físico: uma revisão narrativa. **Corpoconsciência**, p. 40-52, 2018.

[2] BARON, M. C. Advances in care of children with brain tumors. **Journal of Neuroscience Nursing, Glenview**, v. 23, n. 1, p. 39-43, fev. 1991.

[3] KLEIHUES, P. *et al.* The WHO Classification of Tumors of the Nervous System. **Journal** of Neuropathology & Experimental Neurology, v. 61, n. 3, p. 215-225, mar. 2002.

[4] LANDRIGAN, P. J.; GARG, A. Chronic effects of toxic environmental exposures on children's health. **Journal of Toxicology**: Clinical Toxicology, v. 40, n. 4, p. 449-456, 2002.

[5] STEUBER, C. P.; NESBIT JR, M. E. Clinical assessment and differential diagnosis of the child with suspected cancer. **Principles and practice of pediatric oncology**. 3rd ed. Philadelphia: Lippincont-Raven, p. 129-39, 1997.

[6] LANDRIGAN, Philip J.; *et al.* Children's health, and the environment: public health issues and challenges for risk assessment. **Environmental health perspectives**, v. 112, n. 2, p. 257, 2004.

[7] HUBAL, E. A. C; *et al.* Children's exposure assessment: a review of factors influencing Children's exposure, and the data available to characterize and assess that exposure. **Environmental health perspectives**, v. 108, n. 6, p. 475, 2000.

[8] DE OLIVEIRA, A. M.; *et al.*, A Fern Antipodal Vivaldi Antenna for Near-Field Microwave Imaging Medical Applications, in **IEEE Transactions on Antennas and Propagation**, DOI: https://doi.org/10.1109/TAP.2021.3096942.

[9] CHEW, K. M.; *et al.* Human Brain Microwave Imaging Signal Processing: Frequency Domain (S-parameters) to Time Domain Conversion. **Engineering**, v. 5, n. 5, p. 31, 2013.

[10] RAGHAVAN, S.; RAMARAJ, M. An Overview of Microwave Imaging towards for Breast Cancer Diagnosis. In: **Progress in Electromagnetics Research Symposium Proceedings**, p. 627-630, 2012.

[11] XU, X. G. Computational phantoms for radiation dosimetry: A 40-year history of evolution. In: XU, X. G.; ECKERMAN, K. F. (Ed.). Handbook of Anatomical Models for Radiation Dosimetry. Boca Raton: Taylor & Francis, 2010. p. 3-5.

[12] AMERICAN ASSOCIATION OF PHYSICISTS IN MEDICINE. A protocol for determination of absorbed dose from high energy photon and electron beam. **Med. Phys.**, v. 10, n. 6, p. 746-747; 758-759, nov.-dez. 1983.

[13] SILVA, M. P.; MOTA, H. C.; ALMEIDA, C. E. V. Verificação do fator de calibração e indicador da qualidade do feixe de aceleradores lineares. **Radiol. Bra.**, v. 34, n. 5, p. 273-279, jun. 2001.

[14] ALSHEHRI, S. A.; KHATUN, S. UWB imaging for breast cancer detection using neural network. **Progress In Electromagnetics Research**, v. 7, p. 79-93, 2009.

[15] VASILAKOS, A. V.; *et al.* Neural networks for computer-aided diagnosis in medicine: a review. **Neurocomputing**, v. 216, p. 700-708, 2016.

[16] BITENCOURT, J. G. S.; *et al.* Sistema de Rastreamento de Câncer Através de Imagem por Micro-Ondas - Análise e Processamento de Imagem com a Lógica Anotada com Anotação de 2 valores (LPA2v). Anais do **CONICT - Congresso de Inovação, Ciência e Tecnologia do IFSP (2022)**. 23 nov. 2022.

[17] DE CARVALHO, A; *et al.* Rotary Inverted Pendulum Identification for Control by Paraconsistent Neural Network, in **IEEE Access**, v. 9, p. 74155-74167, 2021, doi: 10.1109/ACCESS.2021.3080176.

[18] APICELLA, A.; *et al.* A survey on modern trainable activation functions. **Neural Networks**, v. 138, p. 14-32, 2021.

[19] DA SILVA FILHO, J. I.; LAMBERT-TORRES, G.; FERRARA, L.; MARIO, M. C.; SANTOS, M.; ONUKI, A.; CAMARGO, J.; ROCCO, A., "Paraconsistent Algorithm Extractor of Contradiction Effects - *Paraextrctr_{ctr}*, **Journal of Software Engineering and Applications**, v. 4, n. 10, p. 579-584, 2011. doi: 10.4236/jsea.2011.410067.