

PROCESSAMENTO DE IMAGENS DE MICRO-ONDAS PARA DIAGNÓSTICO DE CÂNCER CEREBRAL INFANTIL: MÉTODO ENERGY

José Mario Dionizio Junior Instituto Federal de São Paulo(IFSP), Cubatão, SP, Brasil

Anna Karina Fontes Gomes Instituto Federal de São Paulo(IFSP), Cubatão, SP, Brasil

Alexandre Maniçoba de Oliveira

Instituto Federal de São Paulo(IFSP), Cubatão, SP, Brasil

Resumo: O objetivo deste trabalho é utilizar um novo método, a energia do sinal, para melhor visualização da imagem gerada através de micro-ondas de uma estrutura que simula um câncer cerebral infantil, com o intuito de contribuir com um futuro diagnóstico desse tipo de câncer. Esse método é utilizado em substituição ao método de valores absolutos e os resultados obtidos são comprovadamente superiores.

Palavras–chave: Câncer cerebral infantil. Imagem de micro-ondas. Energia do sinal. Diagnóstico. Valores absolutos.

Abstract: The objective of this work is to use a new method, called energy, for a better visualization of the image generated by microwave of a structure that simulates childhood brain cancer, in order to contribute to a future diagnosis of this type of cancer. This method is used to replace the absolute values method and the results obtained are proven to be superior.

Keywords: Childhood brain cancer. Microwave image. Energy. Diagnosis. Absolute Values.

INTRODUÇÃO

Um dos grandes problemas atuais, o câncer cerebral infantil, tem aumentado em número de casos nos últimos anos e, com isso, a necessidade de se desenvolver metodologias que aumentem a rapidez de seu diagnóstico e diminua seu custo agregado têm se tornando uma prioridade na área científica (BARON, 1991, p.29-43), (KLEIHUES, 2002, p.215-225).

Diante dessa realidade, alguns trabalhos na área de micro-ondas estão sendo desenvolvidos (CHEW, 2013, p.31), (RAGHAVAN, 2012, p.627-630), utilizando a antena Vivaldi de alta diretividade para obtenção de sinais que permitam a construção de uma imagem que possa ser utilizada como diagnóstico do câncer cerebral infantil.

Esses sinais foram obtidos a partir de um SAM phantom (Specific Anthropomorphic Mannequin), que simula uma cabeça humana infantil de forma não realística, e com a inserção de um pequeno cubo alvo de alumínio com volume de 125mm³.

O tratamento dos sinais obtidos é feito em duas etapas: na primeira, utiliza-se uma transformada inversa de Fourier para transformar o sinal para o domínio do tempo; na segunda, o sinal passa por um processamento que possibilita a visualização adequada do câncer (MANIKANDAN, 2012, p.118-128).

Neste trabalho, o objetivo é apresentar uma nova forma de visualização da imagem desejada, que utiliza a energia dos sinais obtidos. Essa metodologia é grandemente usada em análise de sinais e, neste trabalho, mostra-se mais adequada na detecção da estrutura desejada.

DESENVOLVIMENTO

A utilização da antena FSE-AVA (*Fractal Slot Edge – Antipodal Vivaldi Antenna*) com design fractal de Koch e o analisador de rede Rohde & Schwarz Vector ZND torna possível a obtenção de dados no domínio da frequência, que correspondem a uma seção transversal do *phantom* com o objeto que se quer visualizar, conforme a Figura 1.

Figura 1 – Esquema do SAM, indicando o posicionamento do cubo de alumínio, cujos métodos numéricos devem identificar.

Assim, após a variação da posição do dispositivo, diversos sinais em frequência são obtidos, transformados para o domínio espacial e dispostos em uma matriz. Após esse tratamento, o sinal passa por 3 etapas de processamento: remoção dos ruídos, envelopamento do sinal e valor absoluto.

Na etapa 1, faz-se a subtração do possível ruído obtido na medição. Ou seja, um sinal obtido do *phantom* sem o cubo alvo é subtraído de toda as linhas da matriz. Na etapa 2, faz-se o envelopamento dos sinais, a partir dos seus valores máximos e mínimos. Por fim, na etapa 3, obtém-se o valor absoluto da matriz e sua normalização. Com isso, uma matriz tratada e com valores não negativos é obtida e, assim, pode-se visualizá-la como uma imagem.

A novidade deste trabalho está em substituir o método de valor absoluto aplicado na etapa 3. Neste caso, a energia do sinal é utilizada para a visualização da imagem. A energia do sinal é comumente utilizada em análise de sinais, em particular, na detecção de picos associados a eletrocardiogramas (MANIKANDAN, 2012, p.118-128). Neste contexto, calculando a energia do sinal transformado, que consiste em elevar ao quadrado as entradas na matriz, é possível obter picos mais acentuados, contribuindo para uma melhor visualização de estruturas desejadas.

Para possibilitar a obtenção dos sinais e sua visualização, utilizam-se os softwares Octave¹ e Vislt², respectivamente. Ambos os softwares são livres e abertos, o que facilita a divulgação científica da pesquisa e sua reprodutibilidade.

RESULTADOS E DISCUSSÕES

Nesta seção, apresentam-se as imagens obtidas utilizando a metodologia inicial (OLIVEIRA, 2017, 337-346) e a proposta neste trabalho, envolvendo a energia do sinal. Na Figura 2, mostra-se a imagem obtida com o método de obtenção de valores absolutos. A estrutura visualizada na imagem está bem definida no domínio e tem dimensão aproximada de 20mm no eixo x e 7mm no eixo y, apresentando uma geometria oval.

Figura 2 – Imagem obtida com o método absoluto no domínio espacial [30,70]x[0,40].

Na Figura 3, a imagem é gerada utilizando a energia do sinal em substituição ao método inicial. Nesse caso, a estrutura desejada tem dimensão aproximada de 10mm no eixo x e 5mm no eixo y, e se encontra bem definida no domínio.

¹ "<u>https://www.gnu.org/software/octave/</u>".

² "<u>https://wci.llnl.gov/simulation/computer-codes/visit</u>".

Comparando as visualizações obtidas nas Figuras 2 e 3, pode-se observar uma redução na área da estrutura desejada. Em particular, na dimensão x, há uma redução de 50% no tamanho da estrutura quando utilizada a energia do sinal. Como o cubo alvo que se deseja detectar na imagem por micro-ondas tem dimensões 5x5mm em uma seção transversal, ao utilizar a energia do sinal, obtém-se uma melhor aproximação dessa estrutura. Dessa forma, esse estudo sugere que a metodologia proposta é mais eficiente para a visualização de imagens por microondas no contexto de diagnóstico.

Para melhor explicação e exemplificação, as Figuras 4 e 5 apresentam cortes nas matrizes da imagem obtidas com valor absoluto (azul) e energia do sinal (vermelho).

Figura 4 – Corte na linha y = 19 da matriz imagem obtida com valor absoluto (azul) e energia do sinal (vermelho), com x variando no intervalo [0,100].

Figura 5 – Corte na linha x = 50 da matriz imagem obtida com valor absoluto (azul) e energia do sinal (vermelho), com y variando no intervalo [0,150].

Como pode-se observar, a energia do sinal faz com que os valores da matriz possuam uma estrutura mais acentuada em ambos os cortes obtidos. Em particular, na Figura 4, a diferença é mais significativa. Além disso, na Figura 5 observa-se uma diminuição das oscilações presentes na vizinhança da estrutura, o que contribui para uma imagem mais limpa e com valores mais próximos do esperado, tornando o resultado mais próximo da imagem ideal.

CONCLUSÕES

Neste trabalho foi proposto um método para melhorar a visualização de estruturas em imagens de micro-ondas associadas ao diagnóstico de câncer cerebral infantil, consistindo na obtenção da energia do sinal. Os resultados obtidos com os dois métodos apresentados foram discutidos e, com isso, conclui-se que a energia do sinal se mostra mais adequada na visualização de estruturas na imagem de micro-ondas.

Como trabalho futuro, deseja-se, ainda, estudar e implementar novas metodologias que possibilitem gerar uma imagem com o tamanho de câncer próximo ao real que, neste trabalho, é simulado com um quadrado de dimensões de exatamente 5x5 mm.

REFERÊNCIAS

BARON, M. C. Advances in care of children with brain tumors. **Journal of Neuroscience Nursing**, Glenview, v. 23, n. 1, p. 39-43, 1991.

CHEW, Kim Mey et al. Human Brain Microwave Imaging Signal Processing: Frequency Domain (S-parameters) to Time Domain Conversion. **Engineering**, v. 5, n. 05, p. 31, 2013.

KLEIHUES, P. et al. The WHO Classification of Tumors of the Nervous System. **Journal of Neuropathology & Experimental Neurology**, v. 61, n. 3, p. 215-225, 2002.

MANIKANDAN, M. S., & SOMAN, K. P. A novel method for detecting R-peaks in electrocardiogram (ECG) signal. **Biomedical Signal Processing and Control**, 7(2), 118-128, 2012.

OLIVEIRA, A. M., JUSTO, J. F., PEROTONI, M. B., KOFUJI, S. T., NETO, A. G., BUENO, R. C., & BAUDRAND, H. A high directive Koch fractal Vivaldi antenna design for medical near-field microwave imaging applications. **Microwave and optical technology letters**, 59(2), 337-346, 2017.

RAGHAVAN, S.; RAMARAJ, M. An Overview of Microwave Imaging towards for Breast Cancer Diagnosis. **Progress in Electromagnetics Research Symposium Proceedings**, p. 627-630, 2012.